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Capturing 3D Human Motion from Monocular Images 
Using Orthogonal Locality Preserving Projection 
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Abstract. In this paper, we present an Orthogonal Locality Preserving 
Projection based (OLPP) approach to capture three-dimensional human motion 
from monocular images. From the motion capture data residing in high 
dimension space of human activities, we extract the motion base space in which 
human pose can be described essentially and concisely by more controllable 
way. This is actually a dimensionality reduction process completed in the 
framework of OLPP. And then, the structure of this space corresponding to 
special activity such as walking motion is explored with data clustering. Pose 
recovering is performed in the generative framework. For the single image, 
Gaussian mixture model is used to generate candidates of the 3D pose. The 
shape context is the common descriptor of image silhouette feature and 
synthetical feature of human model. We get the shortlist of 3D poses by 
measuring the shape contexts matching cost between image features and the 
synthetical features. In tracking situation, an AR model trained by the example 
sequence produces almost accurate pose predictions. Experiments demonstrate 
that the proposed approach works well. 
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1   Introduction 

Capturing 3D human motion from 2D images is a significant problem in computer 
vision. For many image understanding applications, the 3D configurations of people 
in images provide usable semantic information about human activity. This is a 
challenging problem suffering from the obstacles conduced mainly by the 
complicated nature of 3D human motion and the information loss of 2D images. 
There are two main state-of-art approaches to deal with this problem [3]. 
Discriminative methods try to find the direct mapping from image feature space to 
pose state space by learning the mapping models from the training examples. This 
approach can supplies effective solution schemes for pose recovering problem if some 
additional issues can be well solved. However, the inherent one-more mapping from 
2D image to 3D pose is difficult to learn accurately because the conditional state 
distributions are multimodal. The quantity and quality of training samples are also key 
factors, which can lead to some intractable problems to deal with. Generative methods 
follow the prediction-match-update philosophy. In the prediction step, the pose 
candidates are generated from the state prior distribution. The followed match step 
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evaluates the pose-image similarity with some measurement. Finally, the optimal 
solution is found by the state update operation. Such approach has sound probabilistic 
support framework but generally computationally expensive because of the complex 
search over the high dimension state space. Moreover, prediction model and 
initialization are the bottlenecks of generative method especially for the tracking 
situation. 

In this paper, we present a novel generative approach, by which we try to widen 
the bottlenecks mentioned above with lower computing expense. We represent the 
human poses by a 3D body model explicitly, whose configurations are expressed by 
the joint degrees of freedom (DOFs) of body parts. In our body model, there are more 
than fifty full body DOFs. This is a very large state space to search for the correct 
poses matching with the given images. Hence, the state space should be cut in order to 
avoid absurd poses. In general, the reasonable pose datum pool in some compact 
subspace of the full state space. We extract the subspace with the OLPP of motion 
capture data. In this concise subspace, there are some advantageous characteristics for 
pose estimation, which will be introduced detailedly in the followed sections. Based 
on the consistency of human motion, the structure of this subspace is explored with 
data clustering and thus we can divide the whole motion into several typical phases 
represented by the cluster centers. States prediction is a common difficulty of 
complicated non-linear problems for the absence of effective prediction model. We 
choose the Gaussian mixture model as state prediction model because this model can 
well approximates the multimodal pose distribution with the outcomes of data 
clustering. By the efficient shape contexts [7] matching, we evaluate the pose 
predictions and finally recover the 3D human pose. In the tracking situation, an 
autoregressive process guides the state prediction. 

2   Related Work 

There has been considerable prior work on capturing human motion [1-3]. However, 
this problem still hangs in doubt because it's ill conditioned in nature. For knowing 
how the human 3D pose is configured, more information are required than images can 
provide. Therefore, much work focus on using prior knowledge and experiential data. 
Explicit body model embody the most important prior knowledge about human pose 
and thus are widely used in human motion analysis [1]. Another class of important 
prior knowledge comes from the motion capture data. The combination of the both 
prior information causes favorable techniques for solving this problem. 

Agarwal and Triggs [6] distill prior information of human motion from the hand-
labeled training sequences using PCA and clustering on the base of a simple 2D 
human body model. This method presents a good tracking scheme but has no 
description about pose initialization. 

Urtasun et al. [8,9] construct a differentiable objective function based on the PCA 
of motion capture data and then find the poses of all frames simultaneous by 
optimizing the function. Sidenbladh et al. [10,11] present the similar method in the 
framework of stochastic optimization. For a specific activity, such methods need 
many example sequences for computing the PCA and all of these sequences must 
keep same length and same phase by interpolating and aligning. Huazhong Ning et al. 
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[14] learn a motion model from semi-automatically acquired training examples that 
are aligned with correlation function. Unlike these methods, we extract the motion 
base space from only one example sequence of a specific activity using the 
lengthways OLPP and thus have no use for interpolating or aligning. 

The methods mentioned above utilize the prior information in generative fashion. 
By contrast, discriminative approach [15-17] makes use of prior information by 
directly learning pose from image measurements. In [15], Agarwal and Triggs present 
several regression based mapping operators using shape context descriptor. 
Sminchisescu et al. [16] learn a multimodal state distribution from the training pairs 
based on the conditional Bayesian mixture of experts models. These methods can 
bring the interest of fast state inference after finishing the training. However, they are 
prone to fail when the small training database are used. 

The styles of using prior information are multiform. Mori et al. [12] contain the 
prior information in the stored 2D image exemplars, on which the locations of the 
body joints are marked manually. By the shape contexts matching with the stored 
exemplars, the joint positions of the input images are estimated. And then, the 3D 
poses are reconstructed by the Taylor method [18]. 

Comparing with these methods, extracting the common characteristic of a special 
motion type from prior information is of particular interest to us. At the same time, we 
ensure the motion individuality of the input sequences in the generative framework 
with a low computational expense based on the efficient analysis of prior information. 

3   OLPP-Based State Space Analysis 

In this study, we represent the 3D configurations of human body as the joint angles 
vectors of body model. These vectors reside somewhere in the state space. The 
potential special interests motivate us to analyze the characteristics and structure of 
this space. Such interests involve mainly modeling the human activities effectively in 
the extracted base space and eliminating the curse of dimension. The state space 
analysis is performed on the base of OLPP. 

3.1   Orthogonal Locality Preserving Projection (OLPP) 

Orthogonal Locality Preserving Projection (OLPP) is a novel subspace learning 
algorithm presented by Deng Cai et al. [4]. This algorithm is built on the base of the 
Locality Preserving Projection (LPP) method [5] and primitively devised to solve the 
problem of face recognition. Actually, OLPP is an effective dimensionality reduction 
method falling into the category of manifold learning. 

Considering the problem of representing all of the vectors in a set of n D-

dimensional samples 1 2, ,..., nx x x  by n d-dimensional vectors 1 2, ,..., ny y y , 

respectively, D d> .  The objective function of LPP [5] is as follows: 
    

2
min || ||i j ij

ij

S−∑ y y  (1) 
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where S is a similarity matrix. A possible way of defining S  is as follows: 

2 2exp( || || / ), || ||

0,
i j i j

ij

t
S

otherwise

ε⎧ − − − <
= ⎨
⎩

x x x x
 (2) 

where ε  is sufficiently small, and 0ε > . Here ε  defines the radius of the local 
neighborhood. In other words, ε  defines the locality. Therefore, minimizing the 
objective function is an attempt to ensure that, if ix  and jx  are close, then iy and 

jy are close as well. Finally, the basis functions of LPP are the eigenvectors 
associated with the smallest eigenvalues of the following generalized eigen-problem: 

T TXLX XDXλ=w w  (3) 

where 1 2[ , , , ]nX = x x x… and D is a diagonal matrix ; ii jij
D S=∑ . 

L D S= −  is the Laplacian matrix and w  is the transformation vector. The 
algorithmic procedure of OLPP is stated below. 

1. PCA projection: projecting the high dimensionality points ix into the PCA 

subspace by throwing away  the components corresponding to zero eigenvalue. 

The transformation matrix of PCA is PCAW . 

2. Constructing the adjacency graph: Let G denote a graph with n nodes. The i-th  
node corresponds to ix . Putting an edge between nodes i and j if ix  and jx  are 
close, i.e. ix  is among p nearest neighbors of jx  or jx  is among p nearest 
neighbors of ix . 

3. Choosing the weights: according to equation (2). 

4. Computing the orthogonal basis functions: Let 1 2, ,..., kw w w  be the orthogonal 

basis vectors, defining: 

( 1)
1 2 1[ , ,..., ]k

kA −
−= w w w  (4) 

( 1) ( 1) 1 ( 1)[ ] ( )k k T T kB A XDX A− − − −=  (5) 

The orthogonal basis vectors 1 2, ,... kw w w  can be computed as follow. 

− Compute 1w  as the eigenvector of 1( )T TXDX XLX− associated with the 

smallest eigen-value. 

− Compute kw  as the eigenvector of 
 

 { }1( ) 1 ( 1) ( 1) ( 1) 1( ) ( )
Tk T k k k T TM I XDX A B A XDX XLX

−− − − − −⎡ ⎤ ⎡ ⎤= − ⋅⎣ ⎦ ⎣ ⎦  (6) 

associated with the smallest eigenvalue of ( )kM . 
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5. OLPP Embedding: Let 1 2[ , ,..., ]OLPP lW = w w w , the embedding is as follows. 

,T
PCA OLPPW W W W→ = =x y x  (7) 

In this paper, utilizing the orthogonality of the base functions, we reduce the 
dimensionality of state space and then reconstruct the data. 

3.2   Pose Representation 

We represent the human pose using the explicit body model. Our fundamental 3D 
skeleton model (see Figure. 1a) is composed of 34 articulated rigid sticks. There are 
58 pose parameters in our model, including 55 joint angles of body parts and 3 global 
rotation angles. Therefore, each body pose can be viewed as a point in the 58D state 
space. 

Figure. 1b show the 3D convolution surface [19] human model, which actually is 
an isosurface in a scalar field, defined by convolving the 3D body skeleton with a 
kernel function. Similarly, the 2D convolution curves of human body as shown in 
Figure. 1c are the isocurves generated by convolving the 2D projection skeleton. As 
the synthetical model features, the curves will match with the image silhouettes. 

 

Fig. 1. (a) The 3D human skeleton model. (b) The 3D human convolution surface model. (c) 
The 2D convolution curves. 

3.3   Extracting the Base Space 

All of the human poses distribute in the 58D state space. The poses belong to a special 
activity, such as walking, running, handshaking, etc., generally crowd in a subspace 
of the full state space. We extract this subspace from the motion capture data obtained 
from the CMU database [20]. 

 

Fig. 2. The manifold of the walking sequences in 3D base space 
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According to the OLPP, any pose vector ( t is the time tag) in a training sequence 
can be expressed as: 

T
t tW=x y  (8) 

where tx and q
t ∈y are column vectors and TW is the transformation matrix. 

( )p q< is the dimension of the base space. Here, we take 5p = $p=5$, which 
means that recovering the human pose in the 5D base space only lose negligible 
information. In this way, we extract the base space covering a special human activity 
from a single training sequence. Actually, the training sequences belonging to a same 
motion type but performed by different subjects can produce similar outcomes. For 
example, our experiments demonstrate that the walking training sequences generate 
the similar manifold in the 3D base space as shown in Figure. 2. Thus, by extracting 
the base space, we represent the pose as a 5D vector in base space. 

The interests of extracting the base space include not only the dimension reduction 
but also the advantages for analyzing. We have known that the special human motion 
type shows the special manifold in the base space. Essentially, this manifold indicates 
the common identity of the motion type. Therefore, our focus is transferred from the 
base space to the more local part: special manifolds, which actually are the point set 
presenting special geometry shape in the base space. We analyze the manifolds with 
the k-means clustering. Based on the activity continuity, the set of ty can be 
partitioned into different connected subsets and every subset represents a special 
motion phase. Here, we choose the number of clustering as 4. Every clustering center 
is the key-frame of the motion sequence. Figure. 3 shows the 3D human poses 
corresponding to the clustering centers. In the followed tracking process, the 
clustering outcomes are used in the pose prediction model. 

 

Fig. 3. The pose key frames in walking sequence 

4   Image Matching Likelihood 

In generative framework, pose recovering be formulated as a Bayesian posterior 
distribution inference:  

( | ) ( ) ( | )p p p∝y o y o y  (9) 

where o represents the image observations. The likelihood function ( | )p o y  is used 

for evaluating every pose candidate generated by the prediction models. 
We choose the image silhouettes as the observed image feature as shown in 

Figure.4. 
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Fig. 4. (a) Original image. (b) Image silhouette. 

We describe the image silhouettes and the convolution curves using shape context 
descriptor [7], a robust and discriminative shape descriptor. The likelihood function is 
constructed by the shape contexts matching [13]. In the matching process, we first 
sample the edge points of the image silhouettes as the query shape.  Next, the point 
set sampled from the convolution curves are as the known shapes. Before matching, 
the image shape and the candidate shape are normalized to same scale. We denote the 

image shape as queryS  and the candidate pose shape as iS . The matching cost can be 

formulated as: 

2 *

1

( , ) ( , )
r

j
v query i query i

j

C SC SCχ
=

=∑S S  (10) 

where SC is the shape context, r  is the number of sample point in image shape, 

and * 2arg min ( , )j u
i u query iSC SC SCχ= . Here, we use the 2χ distance as the 

similarity measurement. 

5   Tracking 

For image sequences, tracking means that the pose estimation in current time step 
depends on the outputs of previous estimation. Thus, the most important part of 
tracking is dynamical model that indicates how the state evolves with time. Another 
intractable problem in tracking is the state initialization. In this section, we deal with 
the problems of tracking based on the outcomes of state space analyzing in generative 
framework. 

5.1   Initialization 

Initialization is the first step of tracking, aiming for finding the correct pose of the 
first frame in a given image sequence. We present an auto-initialization scheme based 
on the Gaussian mixture model. In the base space depicted in section 3, a pose y  can 
be viewed as a 5D random vector that is generated from a multimodal distribution. 
This distribution can be formulated as: 

1

( ) ( ; , )
c

i ci i
i

p y Nω
=

= ⋅ ∑∑ y y  (11) 
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where, 4c = is the number of pose clustering, 
4

1

{ : 1,2,3,4. 1}i i
i

iω ω
=

= =∑  are the 
weights of single Gaussian distributions and { : 1,2,3,4}i i∑ =  are the variances of 
these distributions which can be computed from the training sequence. 

The procedure of auto-initialization is performed as follows: 

1. Estimating of the global rotations by: 
− Partitioning the global angle scopes into 8 bins (Relying on the robustness of              

the matching method, 8 bins is enough.). 
− Generating N samples from each single Gaussian distribution in every bin. (In our 

experiments, N=3.) 
− Performing shape contexts matching between the query image and convolution 

curves produced by the sample poses. 
− Evaluating the bins according to the matching score. The bin containing the 

minimum cost score wins. By the way, recording the matching scores of every 
sample pose. 

2. Determining the pose in the query image.       
− Generating pose samples from the Gaussian mixture distribution as formulated in 

the Equation (11). The weights are determined as follows: (1) Taking  out the 
minimum matching score of each Gaussian distribution from the winning bin (see 
step 1). (2) Obtaining the weights by normalizing the matching scores to [0,1]. 

− Evaluating these pose samples and determining the pose shortlist in which there are 
n samples with minimum matching scores. 

− The final pose is the weighted sum of poses in shortlist. 

5.2   Dynamical Model  

Because of the complicated nature of human motion, it's difficult to obtain an 
analytical physical model for it. We prefer to seek the statistical dynamical model of 
human motion from the training data. Similar to the model introduced in [6], we learn 
a second order Auto-Regressive Process (ARP) for the time domain prediction of 
pose in the base space. In tracking situation, the probability distribution of pose in 
time t can be formulated as: 

1( | ) ( | ) ( | )t t t tp p p −∝y o o y y Y  (12) 

in our model, 1 2{ , }t t− −=Y y yt - 1 . And the prediction distribution 1( | )t tp −y Y  is 

modeled by the second order ARP: 

1 1 2 2t t t tv− −= + +y M y M y  (13) 

where the fifth order matrices 1,2M  and the variances of Gaussian white noise tv  are 
learnt from the training sequences. These parameters are corrected in the process of 
pose recovering according to the estimated outcomes. Guided by the dynamical 
model, we find the correct poses using particle filter. The computational expense of 
our method is low because the special manifold that represents the common 
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Fig. 5. The tracking results 

characteristic of special motion type in the base space lead to the accurate dynamical 
model and therefore tracking can be proceeded with few particles. The results of 
tracking are shown in Figure.5. Experiments demonstrate that our method works well. 

6   Conclusion 

We have introduced a novel approach to tracking 3D human motion. This method 
extracts the compact base space from motion capture data that contain the prior 
information about human motion. Actually, in so doing, we extract the nature of a 
motion type and represent it by a compact way. Corresponding to a special motion 
type, a special manifold in base space indicates the common identity of this motion 
type. This can lead to the efficient estimation of human poses. We use the shape 
context matching to measure the similarity between the query image and the 
candidate poses. Experiments demonstrate that this is a robust and discriminative 
matching method. As the predict model, the Gaussian mixture model and the ARP 
model wok well in the process of tracking. In terms of future work, we will cover 
more types of human motions by including a wider range of training data. We plan to 
improve the matching method in order to reduce the computing expense further. And, 
the conception of base space will be extend to the recognition of human activity. 
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